import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear_model from sklearn.metrics import mean_squared_error,r2_score
url1 = "https://ilovedata.github.io/teaching/bigdata2/data/father-and-son.csv" father_son_df = pd.read_csv(url1) father_son_df.fheight = father_son_df.fheight*2.54 father_son_df.sheight = father_son_df.sheight*2.54
x = np.array(father_son_df["fheight"]).reshape(-1,1) y = np.array(father_son_df["sheight"]) model = linear_model.LinearRegression() model.fit(x,y) pred = model.predict(x) print(model.intercept_,model.coef_)
86.07197505935792 [0.51409304]
print("평균제곱오차, mse: %.2f" % mean_squared_error(y, y_pred))
평균제곱오차, mse: 38.23
print("결정계수 R^2: %.2f" % r2_score(y, y_pred))
결정계수 R^2: 0.25