Untitled

\[\begin{split} \begin{aligned} &\text{Let } A \in R^{200 \times 20},\text{rank}(A) = 20\\ &A = U\Sigma V^T\\ &\Longleftrightarrow A = \begin{bmatrix} \boxed{\begin{matrix} \\ \\ \\ \\ \\ \, u_1 \, \\ \\ \\ \\ \\ \\ \end{matrix}} \!\!\!\!& \boxed{\begin{matrix} \\ \\ \\ \\ \\ \, u_2 \, \\ \\ \\ \\ \\ \\ \end{matrix}} \!\!\!\!& \boxed{\begin{matrix} \\ \\ \\ \\ \\ \, u_3 \, \\ \\ \\ \\ \\ \\ \end{matrix}} \!\!\!\!& \cdots \!\!\!\!& \boxed{\begin{matrix} \\ \\ \\ \\ \\ u_M \\ \\ \\ \\ \\ \\ \end{matrix}} \!\!\!\!& \cdots \!\!\!\!& \boxed{\begin{matrix} \\ \\ \\ \\ \\ u_{200} \\ \\ \\ \\ \\ \\ \end{matrix}} \end{bmatrix} \begin{bmatrix} \boxed{\sigma_1 \phantom{\dfrac{}{}} \!\!} & 0 & 0 & \cdots & 0 \\ 0 & \boxed{\sigma_2 \phantom{\dfrac{}{}} \!\!} & 0 & \cdots & 0 \\ 0 & 0 & \boxed{\sigma_3 \phantom{\dfrac{}{}} \!\!} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & \cdots & \boxed{\sigma_{20} \phantom{\dfrac{}{}} \!\!} \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ \end{bmatrix} \begin{bmatrix} \boxed{\begin{matrix} & & & v_1^T & & & \end{matrix}} \\ \boxed{\begin{matrix} & & & v_2^T & & & \end{matrix}} \\ \vdots \\ \boxed{\begin{matrix} & & & v_{20}^T & & & \end{matrix}} \\ \end{bmatrix} \tag{3.4.5}\\ &\Longleftrightarrow A = \begin{bmatrix}\sigma_1u_1\ & \sigma_2u_2,\dots,\sigma_{20}u_{20}\end{bmatrix} \begin{bmatrix} \boxed{\begin{matrix} & & & v_1^T & & & \end{matrix}} \\ \boxed{\begin{matrix} & & & v_2^T & & & \end{matrix}} \\ \vdots \\ \boxed{\begin{matrix} & & & v_{20}^T & & & \end{matrix}} \\ \end{bmatrix} \\ &\Longleftrightarrow A = \sigma_1u_1v_1^T + \sigma_2u_2v_2^T + \sigma_3u_3v_3^T + \dots \end{aligned} \end{split}\]